Mining flipping correlations from large datasets with taxonomies

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Flipping Correlations from Large Datasets with Taxonomies

In this paper we introduce a new type of pattern – a flipping correlation pattern. The flipping patterns are obtained from contrasting the correlations between items at different levels of abstraction. They represent surprising correlations, both positive and negative, which are specific for a given abstraction level, and which “flip” from positive to negative and vice versa when items are gene...

متن کامل

Efficient Mining of High Utility Itemsets from Large Datasets

High utility itemsets mining extends frequent pattern mining to discover itemsets in a transaction database with utility values above a given threshold. However, mining high utility itemsets presents a greater challenge than frequent itemset mining, since high utility itemsets lack the anti-monotone property of frequent itemsets. Transaction Weighted Utility (TWU) proposed recently by researche...

متن کامل

Mining Very Large Datasets with SVM and Visualization

We present a new support vector machine (SVM) algorithm and graphical methods for mining very large datasets. We develop the active selection of training data points that can significantly reduce the training set in the SVM classification. We summarize the massive datasets into interval data. We adapt the RBF kernel used by the SVM algorithm to deal with this interval data. We only keep the dat...

متن کامل

Mining Very Large Datasets with Svm and Visualization

We present a new support vector machine (SVM) algorithm and graphical methods for mining very large datasets. We develop the active selection of training data points that can significantly reduce the training set in the SVM classification. We summarize the massive datasets into interval data. We adapt the RBF kernel used by the SVM algorithm to deal with this interval data. We only keep the dat...

متن کامل

Mining Classification Rules from Datasets with Large Number of Many-Valued Attributes

Decision tree induction algorithms scale well to large datasets for their univariate and divide-and-conquer approach. However, they may fail in discovering effective knowledge when the input dataset consists of a large number of uncorrelated many-valued attributes. In this paper we present an algorithm, Noah, that tackles this problem by applying a multivariate search. Performing a multivariate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the VLDB Endowment

سال: 2011

ISSN: 2150-8097

DOI: 10.14778/2095686.2095695